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Floods, droughts and other weather related disasters are a major factor contributing to
endemic poverty in regions such as South Asia and this is likely to increase as climate
change proceeds.  Risk reduction interventions represent a major avenue for responding
to both existing flood and drought hazards and the increases likely to emerge as a
consequence of climate change.  Investments in risk reduction are, however, difficult to
economically justify unless their returns can be assessed.  Cost-benefit techniques are
the primary set of economic tools through which such assessments are currently made.
The ability to make such assessments depends, however, on the availability of
probabilistic information. We need to know the frequency with which events such as
floods and droughts will occur and we need to know the magnitude of such events.  Such
information is generally not available, particularly at the local level in developing
countries where populations are large and particularly vulnerable.

The Rohini Basin, part of the larger Gangetic Basin straddling the border of India and
Nepal, is home to some of the poorest populations in the world. Populations in the
Nepal Tarai and in the Indian state of Uttar Pradesh are particularly affected (Moench
and Dixit, 2004). Social, political and economic factors, in combination with geography,
make this basin particularly vulnerable to flooding during the monsoon months.
During the 2007 monsoon, over 2 million in Uttar Pradesh were adversely affected by
floods through habitat loss, destruction of villages, inundation of cropland and
livelihood disruption.

The Intergovernmental Panel on Climate Change (IPCC) (Christensen et al., 2007)
estimates that average June-August precipitation throughout South Asia (defined as the
region 5oN,64oE to 50oN,100oE) will increase approximately 11%, as will heavy
precipitation events by 2099. This is an extremely large area and the general circulation
models' (GCMs) projections do not say how the precipitation will be spread throughout
the area. Furthermore, such information is often not specific enough to be used in
planning and implementing adaptation and disaster risk reduction measures. In order
to effectively support such measures, information about potential climate change
impacts is needed at smaller geographic scales.

General circulation models are complex computer models that simulate global weather
(timescales under 10 days) and climate (anything over 10 days) patterns by modelling the
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physical processes and interactions between the land, ocean, and the atmosphere. The
horizontal grid resolution of GCMs is typically on the order of 100-200 km, insufficient
to capture trends or make projections of potential climate change impacts at smaller
scales, such as river basins. Furthermore, there are large discrepancies between the
precipitation and temperature estimates derived from the various GCMs utilized by the
IPCC (Kripalani et al., 2007; Tolika et al., 2006). However, GCMs generally simulate
large-scale climate fields, such as wind and humidity (Trigo and Palutikof, 2001; Osborn
et al., 1999) quite well and these climate phenomena can be used to drive models that
simulate climate change impacts at smaller geographic scales.

Various downscaling techniques have been developed that attempt to provide
forecasts of potential climate change impacts at smaller scales, guided by output
scenarios from GCMs (Dibike and Coulibaly, 2005; Gangopadhyay et al., 2005). The
techniques range from numerical methods (for example, PRECIS developed by the UK

Hadley Centre) and statistical techniques. Numerical
methods forecast the physical responses of an area
(from regional scale to global scale) to various sets of
inputs (e.g., soil moisture or greenhouse gas
concentrations). Numerical climate models run at any
geographic scale require large sets of reliable data; data
that may not exist in developing country contexts such
as the border region of Nepal and India. Statistical
downscaling techniques attempt to establish a
statistical relationship between point source (weather
station) weather variables, such as precipitation or
streamflow, and large-scale climate fields such as wind
or air pressure at different atmospheric levels.

The focus of this study is the Rohini Basin, which
straddles the border of Nepal and India (Figure 1).
Data paucity in this region makes it difficult to employ

| FIGURE 1 | Maps of the Rohini Basin showing basin location
across India-Nepal border and gauging stations
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numerical downscaling techniques, such as PRECIS. Therefore, a robust stochastic
technique was developed to generate precipitation ensembles that can be utilized to
test climate change scenarios at the river basin level. As with all climate models of
any scale, the validity of the model output is determined by the dataset fed into the
model. Stochastic models are better able to handle situations in which there is not
much data, but the quality of the data determines the model's ability. The old saying
of "garbage in, garbage out" is very true of climate modelling.

This paper presents a new statistical technique for downscaling climate information
from general circulation models so that this information can be used as an input to
economic evaluation of options for reducing flood and drought risks and
responding to the impacts of climate change.  Other papers in this series (From Risk
to Resilience Working Paper Nos. 4 and 5) present cases on the use of this
downscaled climate information in the evaluation of risk reduction measures in
Eastern Uttar Pradesh (India).  We conclude that, although the method presented
here can provide key insights, the results must be used with caution: they illustrate
the types of changes that could occur as a consequence of climate change but do not
represent extremely certain predictions.  Furthermore, limitations in the
availability, accuracy and accessibility of historical data at the field level often limit
the ability to incorporate even robust projections of change in key climate variables
in the evaluation of flood and drought event probabilities and thus in the economic
analysis of avenues for risk reduction.
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Basin Description

The Rohini Basin is relatively small, with a catchment area of 2,701 km2 that straddles
the borders of Nepal and India (1,943 km2 in India and 758 km2 in Nepal). The basin
lies just south of the Himalayan Range, which rises to 8,000 m in less than 100 km
from the basin. Precipitation patterns in the basin are strongly linked with the
seasons and falls always as rain (as opposed to snow). While only 30% of the total
catchment area lies within Nepal, the majority of the rain that feeds the basin falls
within the headwater reaches in Nepal (Dixit et al., 2007). Nearly 90% of the annual
precipitation falls from roughly mid-May through mid-September and is associated
with the South Asian Monsoon (Figure 2). Occasionally, weak depressions beginning
in the Mediterranean bring rainfall to the area during December and January, but this
does not happen every year.

| FIGURE 2 | Average annual precipitation in the Rohini Basin

Annual average precipitation cycle in the Nepali side of the Rohini Basin (blue) and for the Gorakhpur District (red). The monsoon season
occurs during the months of June-September and corresponds with the peak seen in the figure. The Gorakhpur District rainfall data were
sourced from the India Water Portal (2008). The India Water Portal data are derived from interpolated global monthly rainfall data from the
Tyndall Centre's CRU TS 2.1 dataset. The TS 2.1 dataset is a grid interpolation of available weather station data. As will be explained in the
data section, weather station spacing in this region of India is extremely sparse, and the data incomplete. Therefore, the TS 2.1 dataset can be
used to give a rough estimate of annual behaviour on the Indian side of the Rohini Basin, but could not be used in this downscaling effort.



6

From
 Risk to Resilience

W
orking Paper No.  3



7

Do
wn

sca
lin

g: 
Po

te
nt

ial
 Cl

im
at

e C
ha

ng
e I

m
pa

cts
 in

 th
e

Ro
hin

i B
as

in,
 Ne

pa
l a

nd
 In

dia

Obtaining daily precipitation data of sufficient historical length for the basin was
extremely difficult. ISET-Nepal was able to purchase complete rainfall data for five
weather stations in the basin for the period 1976-2006. The validity of the datasets
cannot be verified. Furthermore, little information exists on the verification
process used to check the data. Thus, there are potentially significant flaws in the
Nepali datasets, which cannot be corrected because of lack of information.

Purchasing datasets for Nautanwa and Gorakhpur Airport from the Indian
Government was beyond the scope of the budget allocated for this project.  We
attempted to procure data from the Nautanwa station, but the price set by the
Indian Government was 50,000 rupees. In the end, due to cost limitations, no
datasets for India were purchased or utilized in the downscaling model.

Supplemental data was acquired for Bhairahawa Airport (Nepal) and Gorakhpur
Airport (India) from the National Climate Data Center (NCDC) for the periods of
1977-2006 and 1954-2006, respectively. The NCDC dataset for Bhairahawa Airport
was used to fill gaps in the Bhairahawa Airport set compiled by ISET-N and to
check the validity of the dataset. The two datasets were strongly correlated at 0.98.
Roughly 35% of the NCDC dataset for Gorakhpur Airport were missing and could
not be filled using traditional hydrology methods because we had no other
datasets for stations in India. Thus, no Indian rainfall stations were included in
this modelling effort, which makes it difficult to project potential climate change
impacts on the Indian side of the basin. The lack of Indian rainfall data presents a
severe limitation of the model's ability to accurately make predictions of potential
climate change impacts in the Rohini Basin.

All of the Nepali stations, except Dumkauli, lie within the catchment area.
Dumkauli is not in the basin, but it is extremely close and its precipitation
patterns are similar to the basin's both in amount and timing. Due to the limited
amount of rainfall data and the geographic distribution of rain gauges in the
basin, it was necessary to include Dumkauli in model predictions. Less than 3% of
the data was missing for any given year from each of the stations over the period of
1976-2006. Daily precipitation values were aggregated to obtain monthly rainfall
totals for each of the five stations for the 31-year timeframe.

Data Sets and Assumptions
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Large-scale climate field predictors for this study were obtained from the NCEP/
NCAR reanalysis archive (Kalnay et al., 1996). Much of the rainfall associated with
the monsoon is due to thunderstorm (convective) activity over the basin. Selection
of large-scale climate fields is governed by two sets of assumptions that determine
the physical relationship between the local variable (rainfall) and the large-scale
variables. The first set is based on the necessary atmospheric conditions that allow
for convective activity, from which most the Rohini's rainfall is based:
1) changes in air pressure that lead to atmospheric instability (measured through

geopotential height)
2) moist air (measured through specific humidity)
3) warm air (measured through air temperature)
4) a transport mechanism to move the warm, moist air (measured through winds)

The second set of conditions is governed by their climate change relevance (von
Storch et al., 2000):
1) the large-scale climate predictors have a direction physical relationship with the

local variable and are realistically modelled by the GCMs
2) the physical relationship between the large-scale predictors and the rainfall is

expected to remain relevant in the future, regardless of climate change
3) the large-scale climate predictors capture the climate change signal

We obtained monthly mean large-scale climate variables - geopotential height,
zonal or meridional winds, specific humidity and air temperature at different
vertical pressure levels for the years 1976-2006. The variables cover the geographic
region of 25-30°N and 80-90°E and represent area averaged data over fifteen grid
spaces with a 2.5°x2.5° (latitude-longitude) resolution. These datasets can be
accessed and analyzed from the National Oceanic and Atmospheric Administration
(NOAA) online database at: http://www.cdc.noaa.gov/Timeseries.

The final step in choosing data for a statistical downscaling model is figuring out
which GCMs' output to use. The IPCC report synthesizes climate change
projections from 22 different GCMs operated by various universities and research
centres from around the world. Kripilani et al. (2007) analyzed each of the GCMs to
see how well each could replicate important features of the South Asian Monsoon.
They investigated each model's ability to reproduce historic inter-annual
behaviour, intra-seasonal variability and historic mean precipitation. Only 6 out of
the 22 models were able to reproduce historic observations of monsoons from the
20th century. We selected one of these six, the Canadian Third Generation Coupled
Climate Model (CGCM3) because of its ability to replicate the South Asian
Monsoon and the ease of acquiring output data from this model. Lack of time
prevented investigating and using data from the remaining five GCMs.

For this project, the partners decided to use the climate change scenarios A2 and B1.
The A2 scenario assumes that population growth and fossil fuel usage will continue
to be quite high for a number of years to come, whereas the B1 scenario assumes
that the amount of carbon dioxide in the atmosphere will stabilize at around
550ppm. For a more detailed explanation about the IPCC scenarios, refer to the
IPCC (2000) special report on Emissions Scenarios. Due to the rapidity with which
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the climate is already changing (for example, the faster melting of the Arctic and
Greenland ice sheets) and the GCMs' inability to capture these rapid changes, we
felt potential climate change scenarios are not likely to be valid beyond 2050. Thus,
the downscaling model projects climate change impacts on precipitation in the
Rohini Basin only for the period 2007-2050.

Data for the four large-scale climate predictors mentioned above were obtained
from the CGCM3 for the period of 2007-2050 over the same geographic range as the
NCEP data. The resolution of the CGCM3 data is coarser, with grid divisions of
3.75°x3.75° or only 9 grid squares over the same geographic domain as the NOAA
data. The CGCM3 model is run in ensemble mode, that is the model is run five
times for a scenario (say A2) using slightly different starting conditions, to generate
a small range of possible climate change conditions for a particular scenario and
provide a better sense of what uncertainties exist in the model. Thus, we collected
CGCM3 output data for 10 different ensemble runs: five runs from A2 and five runs
from B1. For the remainder of this document, we refer to these ensemble runs as
either A2R# or B1R#, with the # sign indicating runs 1 to 5.
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Climate Diagnostics

Since the Rohini Basin is not a large basin from a climate variability perspective and
the rainfall patterns between the five stations were strongly correlated, the monthly
rainfall mean of the five gauges was calculated. This monthly mean was used as the
rainfall predictand to train the model over the historical period of 1976-2006 before
using the model to make projections of climate change in the basin.

The South Asian Monsoon is an annual pattern of increased rainfall over South
Asia, typically beginning around late May and ending in September1. The monsoon
develops when a low-pressure system forms over the Tibetan Plateau and the
winter-spring upper-level westerly jet stream over the southern Himalayas
disappears. The low pressure causes the winds to shift direction and blow from the
southwest over the Indian subcontinent, bringing moisture from several places. The
temperature difference between the land and the Indian Ocean also contributes to
formation of monsoon thunderstorms. Tropical cyclones and depressions moving
through the Bay of Bengal or other parts of the Indian Ocean enhance extreme
rainfall events during the monsoon and contribute to severe flooding in the Rohini
Basin. The monsoon ends when the Tibetan low pressure breaks down and the
upper-level westerly jet resumes, generally during September (Torrence and
Webster, 1999; Fasullo and Webster, 2003; Meehl and Arblaster, 2002).

The physical relationships between the large-scale climate indices and the basin
rainfall are established using correlation analysis. While correlation does not imply
causation, it is well established in meteorology that certain physical processes
contribute to the formation of thunderstorms and the monsoon. We performed
correlation analysis between each month's rainfall and various large-scale climate
features (geopotential height, specific humidity, air temperature, and meridional
and zonal winds). See Figure 3 for an example of the correlation analysis. While
historically the monsoon has been strongly correlated with snowfall amounts over

1 The exact timing of monsoon onset and termination depends on the location. For the Rohini Basin, the
monsoon typically begins around mid-June and ends mid-September. There is however considerable variation
each year.

Methodology
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the Tibetan Plateau and the El Niño Southern Oscillation (ENSO), these
relationships are changing and it is not certain what the nature of the relationship
will be in the future due to climate change (Saji et al., 2006; de Szoeke and Xie, 2008).
Therefore, we decided not to use these large-scale climate features in our modelling
efforts. The correlations were tested for significance and the feature that had the
highest correlation with the month's rainfall were identified and used to form the
predictor set.

The NOAA datasets and the CGCM3
datasets have different grid spacing, which
had to be resolved before selection of the
final predictor set for the model. In each
dataset, the variable (e.g. wind) is measured
at the centre of the grid space. The NOAA
dataset is comprised of fifteen
measurements, one per grid space and the
CGCM3 has nine values, one per grid space.
Thus, the NOAA dataset needed to be
reduced to nine grid points that are
spatially matched with the CGCM3 grid
spacing. We used the great circle distancing
method (a standard geometry technique) to
map the NOAA dataset grid points onto the
CGCM3 grid spacing.

The final NOAA and CGCM3 datasets
contain data from four variables (wind,
geopotential height, specific humidity and
air temperature). The final data matrix for
both contains thirty-six columns (9
columns corresponding to the
measurements at 9 grid points per variable).
The NOAA dataset contains values from
1976-2006. The CGCM3 dataset is actually
comprised of 10 different datasets, five runs
from each climate change scenario A2 and
B1 for the years 2007-2050.

Statistical Downscaling Model

The goal of the statistical downscaling
model is to project how various climate
change scenarios will alter precipitation
patterns in the Rohini Basin for the years
2007-2050. Since we have no way of testing

the validity of the model's projections in the future, we assess the model's
performance by how well it is able to replicate each month's historical precipitation
for 1976-2007. This is termed the model calibration or "testing period".

| FIGURE 3 | August's (1976-2006) rainfall spatially correlated with
zonal wind (left) and air temperature (right). Correlations
above 0.366 are significant at the 95th percentile in a two-
sided test



13

Do
wn

sca
lin

g: 
Po

te
nt

ial
 Cl

im
at

e C
ha

ng
e I

m
pa

cts
 in

 th
e

Ro
hin

i B
as

in,
 Ne

pa
l a

nd
 In

dia

Statistical downscaling methods involve finding a relationship between large-scale
climate features and the local feature (e.g. rainfall) to be predicted. There are
numerous statistical downscaling techniques in use: (1) regression-based (e.g.
neural networks or principal component analysis), (2) classification methods (e.g.
weather generators) or (3) analogue methods. The modelling method utilized for
this study is robust, simple analogue method run in ensemble mode
(Gangopadhyay et al., 2005; Opitz-Stapleton and Gangopadhyay in press). During
the model "testing period" of 1976-2006, the model is run in drop-one, cross-
validation mode, which is described further below. Each month is hindcast
separately to better capture the intra-seasonal rainfall patterns of the Rohini Basin.
The model methodology is basically as follows:

1) Let [X] represent the matrix of data of large-scale climate indices for n (31) years
and m (36) columns corresponding to four variables from nine grid spaces from
the NOAA dataset. "cols" = columns.
[X] = [1976 geopotential (9 cols), wind (9 cols), specific humidity (9 cols), air
temp (9 cols)]

 ....
 ......
[2006 geopotential (9 cols), wind (9 cols), specific humidity (9 cols), air temp
(9 cols)]

2) For the year i that we are trying to predict (say rainfall of May 1980), select the
corresponding large-scale climate variables of that year i. The variables of this
year form the feature vector [F].

3) Perform the drop-one cross-validation. This involves dropping the year i we are
trying to predict, and all the variables of that year, from the matrix [X] to form a
smaller climate variable matrix [S] that is one year less than [X]. The model then
tries to make the rainfall prediction from the smaller dataset [S].

4) Compare the climate variables from [F] to all the other climate variables from
the matrix [S]. Find the years in [S] which have the most similar large-scale
climate conditions to [F], keeping only the years that are the most similar to [F].
Let us call this group with the most similar climate conditions the "K-Nearest
Neighbours" (K-NN).

5) Take the rainfall values for each of the K-NN years as the set of possible rainfall
values for year we are trying to predict. Assign each of these rainfall neighbours a
weight depending on how close its corresponding climate variables are to the
climate variables of year i.

6) Bootstrap the K-NN rainfall values according to its weight to generate an
ensemble of rainfalls for the year i (Venables and Ripley, 2002). The bootstrapping
is performed 30 times to generate 30 ensemble members. For each of the years
1976-2006, repeat steps 2-6 to obtain an ensemble rainfall reconstruction.

The steps are slightly different generating rainfall predictions for the years 2007-
2050, conditioned on the climate change scenarios selected from the CGCM3. No
drop-one cross-validation is used when forecasting according to climate change
scenarios.
1) This step is the same as step 1 above.
2) The difference between this step and step 2) above is that the feature vector [F] is

formed from the CGCM3 dataset. So, [F] is comprised of the large-scale climate
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indices projected by the CGCM3 for a single run of climate change scenario A2
or B1.

3) The vector [F] of future large-scale climate indices is compared directly with the
matrix [X] of historical climate variables derived from the NOAA datasets and
the K-NN rainfalls found.

4) Steps 5 and 6 are the same, with the model repeated for each year 2007-2050 to
generate ensembles.

5) The monthly rainfall projections are disaggregated to daily time steps using the
daily rainfall percentage distributions from the historical record. For example,
say May 2020 had six K-NN (e.g. 1978, 1987, 1992, 1995, 2001, and 2003). In May
1978, rain fell in six days throughout the month, with each day receiving a
percentage of the total monthly rainfall. The percentage rainfall patterns were
then multiplied by May 2020's monthly rainfall projection to produce
hypothetical daily rainfall distributions.

Model Verification

Each ensemble forecast is equally probable for the period 2007-2050. We will not
know until the future has become the past which forecast was the most accurate. We
can only test the model's accuracy, and whether or not we chose the correct large-scale
climate variables, by seeing how well the model could hindcast the historical rainfalls
for 1976-2006.  For the remainder of this paper, we only discuss the monthly
ensemble rainfall projections. One method is to visually compare the ensemble
rainfalls with the historical rainfalls, such as seen in Figure 4. Boxplots provide a
pictorial comparison of the historical rainfall with the model's ensemble rainfalls.
Each box represents the numerical range of the rainfall ensembles generated by the
model. The bottom "whisker" coming out of the box presents some of the lowest
rainfall ensembles and the top "whisker" represents the highest rainfall projections.
The box represents the spread of the majority of the rainfall ensembles. The black
line in the middle of the box represents the middle value ensemble rainfall. The red
triangle represents the actual, historically observed rainfall.

| FIGURE 4 | Plots of the monthly ensemble rainfalls compared with the historical monthly rainfalls (1976-2006). The boxes represent the
ensemble rainfalls and the red triangles represent the actual, historical rainfall value
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Each month was modelled separately to try to account for the different large-scale
climate processes that cause rainfall in each month. Consequently, the model's
rainfall predictions are better in some months than in others. If a box (seen in
Figure 4) is really narrow and centred around the red triangle, this indicates that
the model was relatively "certain" about its rainfall predictions. If the box is
relatively wide or the red triangle falls in a “whisker”, this indicates that there was a
wide range in the large-scale climate conditions and that the model was more
"uncertain" about the rainfall prediction.

Another way of measuring the model's
performance is to find the correlation between the
median (the middle) ensemble member and the
observed historical rainfall value. Table 1 displays
the correlation between the median ensemble
member and the historical rainfall. The model was
able to replicate the historic precipitation value
better in some months than in others. In general,
the median ensemble member is well correlated
with observed. During the monsoon months of
June-August, the model is able to predict the
rainfalls well, except for years in which the rainfall
was abnormally high for that month. In cases of
really high rainfall, the model has a tendency to
underpredict or make lower predictions of rainfall
than actually occurred. The model is underpredicting these high rainfall years
because of the monthly time step of the model. In July 1998, for instance, extreme
rainfall amounts fell in five short (1-2 day) cloudburst events of a very small
geographic scale. On July 12, 1998, a rainfall station at Parasi (near the top of the
basin) recorded 121 mm of rain in 24 hours. Surrounding stations less than 20 km
away recorded only 35 mm in the same time period (NWCF, 2006). As the model
relies on the monthly averaged rainfall and monthly averages of the large-scale
climate variables, the highly unstable, day to couple of days, atmospheric
conditions that generate the localized cloudbursts are not captured in the monthly
time step of
the model.

While the model does not represent extreme rainfall events well, it does capture the
high range of variability and uncertainty in rainfall in the basin. The ability to
capture variability is key in climate predictions. While cloudbursts and extreme
rainfall events do cause severe floods in the Rohini Basin, it is the small-degree
flooding that occurs every couple of years that contributes to the endemic poverty
in the basin. It is the continued, highly variable, small weather events that slowly
erode crops, land and livelihood assets.

The months of January, September and October proved extremely difficult to model
accurately. January is dry in most years. When rainfall does occur in this month, it
is due to remnants of depressions from the Mediterranean that transport moisture
into Nepal. The timescale of these depressions are on the order of a couple of days,

Month

January
February
March
April
May
June
July
August
September
October
November
December

| TABLE 1 | Correlation of the median ensemble members with
the observed rainfall for each month over the period
of 1977-2006

Correlation Coefficient

-0.17
 0.39*
 0.65*
 0.47*
 0.62*
 0.33**
 0.33**
 0.53*
 0.22
-0.23
 0.43*
 0.48*

* is significant at the 95th percentile.
** is significant at the 90th percentile.
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as well, and are not captured in the monthly time step of the model.
During September and October, the atmospheric conditions that allow for the
monsoon are decaying and the atmosphere does not reach a stable state until
toward the end of the October. The model cannot capture these rapidly changing
atmospheric processes.

Thus, over the testing period, the model is better able to replicate rainfall in some
months than in others. We can say that we have higher confidence in the model's
ability for months in which the model was able to hindcast at the 95th percentile or
higher. The 95th percentile means if we were to randomly pick a number, it would
have a 1 in 20 chance of being the correct rainfall, which is a pretty low chance. The
90th percentile indicates a 1 in 10 chance of randomly guessing the correct rainfall. If
the probability of randomly guessing the correct rainfall is high, it means that the
model does not have great skill. Therefore, we can say that we have high confidence
in the model's ability in February to May and August, November and December. We
have some confidence of the model's ability in June and July, but not great
confidence. We have no confidence in January, September or October. This means
that we have limited confidence in the climate change projections for June and July
and very little confidence in projections for January, September and December. The
limited confidence in the monsoon months of June and July are troubling, as a
significant portion of the annual rainfall occurs during these months and we would
like greater certainty for flood forecasting. However, it does not appear possible to
improve the model's performance during these months.
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Once we ran the model over the test period of 1976-2006 and were satisfied that the
model was performing as well as it could, we pushed the model to make forecasts of
possible rainfall futures for the Rohini Basin using different climate change
scenarios. As mentioned in the methodology section, the climate change scenarios
are introduced into the model by forming the feature vector [F] from the CGCM3
data. As we have ten different climate change possibilities from CGCM3, the model
was run ten different times.

The solid red line is the historical (1976-2006) median precipitation value for August. The solid blue line represents the new, climate change projected 50th percentile rainfall
value. It is apparent that the new median rainfall values are higher.

| FIGURE 5 | Boxplots of the projected rainfall under the climate change scenarios A2 (run 1) and B2 (run 1)

There is a great deal of uncertainty in future projections of climate change impacts on
the precipitation patterns of the Rohini Basin, as seen in Figure 5.  The uncertainty
indicates potentially greater variability low-frequency weather events. The
uncertainty of the climate change projections is due to a number of factors, which
are described in greater detail in Section 6. The boxes in the plots are not narrow
and the whiskers (dotted lines) extend beyond the boxes, indicating potentially
enhanced variability, particularly in the monsoon months. During the non-

Climate Change Projections
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January
February
March
April
May
June
July
August
September
October
November
December

| TABLE 2 | The median ensemble projections under the A2 scenario (rainfall in mm)

Historic

18.20
 16.01
20.97
40.76

127.09
366.55
648.29
476.05
321.58
86.90

8.38
19.47

A2R1

8.57
5.90
2.88
3.78

86.56
410.21

568.56
503.08
346.54

36.09
1.21

116.61

A2R2

8.00
5.88
3.93
3.93

81.90
428.08
582.46
502.83
292.18
24.24

5.19
 7.97

A2R3

4.61
5.80
2.93
4.16

89.09
428.22
671.93
507.86
356.84

72.14
1.28
6.22

A2R4

7.56
6.27
3.66
4.32

85.34
382.15
575.75
503.71
352.87

27.21
2.02
7.17

A2R5

4.98
6.37
4.87
3.93

152.99
410.33
511.56

503.48
353.27

26.74
1.76
9.05

January
February
March
April
May
June
July
August
September
October
November
December

| TABLE 3 | The median ensemble projections under the B1 scenario (rainfall in mm)

Historic

18.20
16.01
20.97
40.76

127.09
366.55
648.29
476.05
321.58
86.90

8.38
19.47

A2R1

5.34
6.25
5.21
4.10

91.24
424.27
569.03
510.78
346.99

21.72
1.18
7.41

A2R2

8.12
5.94
0.01
4.05

72.85
430.13
569.19
510.92
348.84

30.57
1.38
7.31

A2R3

8.21
6.30
6.26
4.15

81.95
389.39
568.01
504.58
364.59

20.08
1.46
8.70

A2R4

6.98
6.23
3.17
3.88

188.08
470.72
604.46
500.50
292.65

23.59
1.80
8.28

A2R5

7.04
1.25
6.18
3.87

76.85
400.36
584.48
504.09
347.80

24.02
1.99
9.60

For the A2 and B1 scenarios, the Rohini Basin appears to be drying out in all
months except for the monsoon months of JJAS. Under the B1 scenario, July is
projected to be dryer than the historical record. For the both A2 and B1 scenarios,
there is strong agreement amongst all the model runs (i.e. the median ensemble
member from A2R1 is very similar to all the other runs of A2). The implication of a
wetter monsoon season is the potential for increased flooding. Furthermore,
because the model had a tendency to underpredict very high precipitation events
during the monsoon, it is likely that these future projections are lower than their
potential in the A2 or B1 scenarios. The drying of the other months has potentially
negative implications on the agricultural seasons, reducing the ability to plant
certain types of crops. A generally drier July under the B1 scenario would negatively
affect the crucial nursery stage of paddy crop. We have more confidence that the

For the majority of the year, the months are projected to be drier than the period 1976-2006. The monsoon months of JJAS are wetter
than the historic period.

For the majority of the year, the months are projected to be drier than the period 1976-2006. The monsoon months of June, August and
September are wetter than the historic period. Surprisingly, July is projected to be drier under the B1 scenarios.

monsoon months, the boxplots are tighter and less variability in rainfall is seen. It
is better to utilize the ensemble projections as a range of possible precipitation, and
not try to expect a single rainfall value, which no climate model could give. The best
way to acquire a sense of how rainfall might change is to compare the median
ensemble projection (A2: runs 1-5 and B1: runs 1-5) with the historical mean to
figure out, on average, if the month is likely to be wetter or drier than the historical
period. See Tables 2 and 3.
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dryer conditions projected in non-monsoon months are more accurate than the
monsoon month projections, because the model was better able to replicate
historical rainfalls in non-monsoon months than in monsoon months. We are
fairly confident in the projections for the month of August, though, as the model
was able to perform well over the test period (this is likely due to well established,
stable atmospheric conditions sustaining the monsoon during August, that are not
as well established in other monsoon months). The ensemble spread (the range of
rainfall values either replicated or projected) is much smaller in non-monsoon
months than in monsoon months, indicating smaller model uncertainty and less
variability in rainfall.

As noted earlier, it is the degree of uncertainty and variability in the rainfall
projections that is extremely important. While we might say with confidence that
during the monsoon month of August, both the A2 and B1 scenarios are projecting
an average precipitation increase of 6% from the historical mean, the spread of the
ensembles is also critical. Even though the average increase might be 6%, there is
large year-to-year variability, which implies the potential for more frequent, low-
magnitude flood and drought events in the basin. The ability to predict high
magnitude events is difficult with this model. However, the greater variability in
small events indicates that effective climate adaptation and disaster risk reduction
measures need to account for increased variability.
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The analog, statistical downscaling methodology presented here provides a robust
means of translating large-scale climate change scenarios generated by GCMs to
potential scenarios at smaller geographic scales. The accuracy and skill of the
downscaled outputs is constrained by the quality and quantity of data available at
river-basin scales or the geographic region under consideration. The Nepali
datasets for the Rohini Basin were too short to capture the full range of historical
climatic variability in the basin. The incompleteness of the data is evident in the
uncertainty (variability) evident in the model calibration phase and the inability of
the model to replicate precipitation patterns in the months of January, September
and October. The model provides some skill in the months of June and July, but not
as much skill as the remaining months. During the non-monsoon months, the
model has a tendency to slightly overpredict rainfall for small rainfall amount
events. In the monsoon months of June-August, the model underpredicts rainfall
during years of abnormally high (>70th percentile) rainfall.

The uncertainty from hindcasting historical rainfalls propagates forward into the
climate change projections for the basin. For both the A2 and B1 scenarios, the
model projects a decrease in precipitation in non-monsoon months. During the
monsoon months, a slight increase in precipitation is projected. Given the model's
dry (wet) bias in monsoon (non-monsoon) months, these future projections are
possibly understated. The model does indicate a high degree of uncertainty in its
predictions, telling that precipitation variability is likely to increase.

The model relied on the climate change scenarios A2 and B1 from a single GCM to
make precipitation predictions for the basin. No other GCMs out of six possible
GCMs were considered due to time constraints and data availability. For
completeness, climate change projections from another GCM should be used for
comparison.

Concluding Discussion

The statistical downscaling method utilized to project potential impacts of climate
change on the rainfall patterns of the Rohini Basin proved to be robust in

Summary of Findings
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replicating historically observed rainfall for the period of 1976-2006. The ability of
the model to replicate rainfall or make projections is determined by three factors: the
quality and quantity of the data input in the model, the atmospheric instability
caused by the basin's proximity to the Himalayan Range and the changing
relationships between monsoon rainfall and large-scale climate patterns such as the El
Niño Southern Oscillation (ENSO). Our model's ability to produce rainfall
projections with the accuracy of projections made for models of either the United
States or Western Europe is hindered by these three factors, which cannot be
overcome.

In an ideal climate modelling situation, such as seen in the developed world,
datasets of weather and climate indices (such as rainfall or temperature), are
available for fifty years or more. The longer datasets give climatologists greater
confidence in their ability to make forecasts because longer records provide better
insight into the range of weather events that are possible in an area. The number or
weather stations per area and the methodology used to collect data are also very
important. For instance, Boulder County, in the state of Colorado in the United
States, is roughly half the size of the Rohini Basin and has twenty weather stations
in which data has been collected since 1948. The measurements of temperature,
rainfall and wind speed, amongst other variables are fully automated and recorded
hourly. Moreover, the weather data from the Boulder County stations are easily
accessible online for a minimal fee.

The situation is not so fortunate in the Rohini Basin. On the Nepal side, data were
only available from five weather stations located primarily on the upper, western
edge of the basin. Weather records for points in the middle of the basin do not exist.
Given the sometimes highly localized nature of cloudbursts and heavy rainfall
events during the monsoon months, we cannot be certain that the geographic
distribution of the weather stations for which we do have data are really
representative of average rainfall conditions in the basin. The rainfall records only
extend back to 1976, which is not a statistically long period for recording if there
have already been climate shifts in the basin or for capturing the full range of
potential rainfall behaviour. Furthermore, Nepal has been experiencing civil unrest
for a number of years. The Nepal Tarai, in which the Rohini Basin is partially
located, has experienced significant instability, hindering the ability of the
individuals in charge of the weather stations to collect data. The government official
(anonymous) who provided the weather data indicated that gaps of daily data had
been filled in from memory.

On the Indian side of the Rohini Basin, which encompasses 1,943 km2, only two
weather stations are/were in existence: one at Nautanwa and another at Gorakhpur
Airport. The Nautanwa station collected data only for a brief period in 1978 and at
sporadic intervals until 2003. The Gorakhpur Airport weather station began
collecting data in 1954, with several decades completely missing. For the period of
1976-2006, nearly 35% of the dataset was missing, rendering it useless for this
modelling effort. Furthermore, we procured these datasets from the World
Meteorological Organisation (WMO). The price for the Indian government's
Nautanwa dataset alone was 50,000 rupees and their version proved to be almost



23

Do
wn

sca
lin

g: 
Po

te
nt

ial
 Cl

im
at

e C
ha

ng
e I

m
pa

cts
 in

 th
e

Ro
hin

i B
as

in,
 Ne

pa
l a

nd
 In

dia

identical to the WMO version. We did not inquire about the price of the Gorakhpur
Airport dataset. Thus, we have no idea about the true rainfall distribution in the
majority of the area of the basin. The lack of Indian rainfall data is a major gap in
the model, as nearly 70% of the land area of the basin lies in India.

The second factor limiting our model is the Rohini Basin's proximity to the
Himalayan Range. All climate models, whether numerical or statistical, have
difficulty in replicating historical weather patterns for areas near or in the major
mountain ranges of the world. Every GCM from which the IPCC compiles climate
change projects has difficulty in modelling the physical weather and climate
processes over the Himalayan, Rocky Mountain, Alps, and Andean mountain
ranges. This is because atmospheric processes are affected by heating, pressure and
wind changes around mountain peaks. The Himalayas are the highest mountain
range in the world and the area extent of their weather/climate influence is quite
large. Indeed, it is not certain that the South Asian Monsoon would exist without
the presence of the Himalayas.

The final factor, the changing relationship between monsoon rainfall and large-scale
climate predictors such as ENSO or the snow cover over the Tibetan Plateau,
hinders confidence in the ability of all climate models to project how climate change
will impact the monsoon. For many years, there was a strong relationship between
the monsoon and ENSO: during El Niño years the monsoon tended to be weaker
and drought was widespread; during La Niña years, the monsoon was stronger.
Over the past fifteen to twenty years, however, the relationship between ENSO and
the monsoon has been breaking down (Ihara et al., 2006; Kumar et al., 2006;
Douville, 2006). Furthermore, none of the GCMs can reliably replicate all the
features (sea surface temperature, cloudiness, pressure changes, etc.) of ENSO and
all of the projections of ENSO under climate change scenarios are different (de
Szoeke and Xie, 2008). Due to the breakdown in the relationship between ENSO and
the monsoon, the inability of the GCMs to project ENSO, we did not incorporate
ENSO into our downscaling model.

We can say with certainty that the model's ability to project rainfall is severely
limited by the data constraints under which we had to operate. The Nepali saying
"Ké garné? - What to do?" is particularly apropos. The reality of the weather data
available for the Rohini Basin is the same reality in the majority of the developing
world. It is in developing nations that individuals are more vulnerable to current
climate hazards and likely the most vulnerable to climate change impacts. Without
a better sense of potential climate change impacts at smaller geographic scales than
100-200km, it is difficult to begin planning and implementing adaptation or disaster
risk reduction measures.

Finally, we have to caution about treating the climate change projections of GCMs
as completely certain. The IPCC climate change scenarios were developed by a
consortium of scientists after careful analysis of social, economic, and energy use
trends. Despite the scientific analysis, the IPCC climate change scenarios are only
educated guesses of future energy use and how societies will evolve in the next
century. The climate change projections by the GCMs are conditioned on these
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best-guess climate change scenarios. The lack of certainty in climate change
scenarios, coupled with lack of complete understanding about the relationships
between various physical land, ocean and atmospheric processes warrants caution
in relying upon traditional engineering solutions as adaptation measures. The lack
of certainty in climate change scenarios DOES NOT imply that we should not believe
in climate change. Indeed, the effects of climate change are already beginning to be
felt around the world. Some effects, such as the rapid melting of the Arctic and
Greenland ice sheets is more profound than that being projected by the GCMs,
indicating that climate change processes might be occurring faster and be more
severe than we can guess.



25

Do
wn

sca
lin

g: 
Po

te
nt

ial
 Cl

im
at

e C
ha

ng
e I

m
pa

cts
 in

 th
e

Ro
hin

i B
as

in,
 Ne

pa
l a

nd
 In

dia

Christensen, J.H. et al. (2007), Regional Climate Projections, In: Climate Change
2007: The Physical Science Basis. Contribution of Working Group I to the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change
[Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.
Tignor and H.L. Miller (eds.)], Cambridge University Press: Cambridge, UK.

De Szoeke, S.P. & S.P. Xie (2008), The Tropical Eastern Pacific Seasonal Cycle:
Assessment of Errors and Mechanisms in the IPCC AR4 Coupled Ocean-
Atmosphere General Circulation Models, Journal of Climate 21, 2573-2590.

Dibike, Y.B. & P. Coulibaly (2005), Hydrologic impact of climate change in the
Saguenay watershed: comparison of downscaling methods and hydrologic
models, Journal of Hydrology 307, 145-163.

Dixit, A. (2006), Reconceptualizing flood mitigation in Tarai, 168 pp., NWCF:
Kathmandu. (Unpublished paper)

Dixit, A. et al. (2007), Flood Disaster Impacts and Responses in Nepal Tarai’s
Marginalised Basins, In: Working with the Winds of Change: Toward
Strategies for Responding to the Risks Associated with Climate Change and
Other Hazards [Moench, M. & A. Dixit (eds.)], pp. 119-157, ISET-
International: Boulder and ISET-Nepal: Kathmandu.

Douville, H. (2006), Impact of Regional SST Anomalies on the Indian Monsoon
Response to Global Warming in the CNRM Climate Model, Journal of
Climate 19, 2008-2024.

Fasullo, J. & P.J. Webster (2003), A Hydrologic Definition of Indian Monsoon Onset
and Withdrawal, Journal of Climate 16, 3200-3211.

Gangopadhyay, S., M. Clark & B. Rajagopalan (2005), Statistical downscaling using
K-nearest neighbors, Water Resources Research, 41 W0204.

Ihara, C. et al. (2006), Indian Summer Monsoon Rainfall and its Link with ENSO
and Indian Ocean Climate Indices, International Journal of Climatology,
DOI: 10.1002/joc.1394.

IPCC (2000), Emission Scenarios, [Nakicenovic, N. and Stuart, R. (eds.)], 570pp.,
Cambridge University Press: Cambridge, UK.

References



26

From
 Risk to Resilience

W
orking Paper No.  3

Kalnay, E. et al. (1996), The NCEP/NCAR reanalysis 40-year project, Bulletin of the
American Meteorological Society, 77, 437-471.

Kripalani, R.H., J.H. Oh, A. Kulkarni, S.S. Sabade & H.S. Chaudhari (2007), South
Asian summer monsoon precipitation variability: Coupled climate model
simulations and projections under IPCC AR4, Theoretical and Applied
Climatology 90, 133-159.

Kumar, K.K. et al. (2006), Unravelling the Mystery of Indian Monsoon Failure
During El Niño, Science 90 (12), 115-119.

Littlewood, I.G. et al. (2007), Predicting daily streamflow using rainfall forecasts, a
simple loss module and unit hydrographs: Two Brazilian catchments,
Environmental Modelling & Software 22, 1229-1239.

Meehl, G.A. & J.M. Arblaster (2002), The Tropospheric Biennial Oscillation and
Asian-Australian Monsoon Rainfall, Journal of Climate 15, 722-44.

Moench, M. & A. Dixit (Eds.) (2004), Adaptive Capacity and Livelihood Resilience:
Adaptive Strategies for Responding to Floods and Droughts in South Asia,
214pp., ISET-International: Boulder and ISET-Nepal: Kathmandu.

Opitz-Stapleton, S. & S. Gangopadhyay (in press), Developing Monthly
Precipitation Ensembles from Large-scale Climate Fields Using a Non-
Parametric Statistical Downscaling Algorithm with an Application to the
Rohini River Basin, Nepal, Journal of Hydrology.

Osborn, T.J. et al. (1999), Evaluation of the North Atlantic Oscillation as simulated
by a climate model, Climate Dynamics 15, 685-702.

Saji, N.H, S.P. Xie & T. Yamagata (2006), Tropical Indian Ocean Variability in the
IPCC Twentieth-Century Climate Simulations, Journal of Climate 19, 4397-
4417.

Tolika, K. et al. (2006), An Evaluation of a General Circulation Model (GCM) and
the NCEP-NCAR Reanalysis Data for Winter Precipitation in Greece,
International Journal of Climatology 26, 935-955.

Torrence, C. & P.J. Webster (1999), Interdecadal Changes in the ENSO-Monsoon
System, Journal of Climate 12, 2679-2690.

Trigo, R.M. & J.P. Palutikof (2001), Precipitation Scenarios over Iberia: A
Comparison between Direct GCM Output and Different Downscaling
Techniques, Journal of Climate 14, 4422-4446.

Venables, W.N. & B.D. Ripley (2002), Modern Applied Statistics with S (4th Ed.), 495
pp., Springer: London.



27

Do
wn

sca
lin

g: 
Po

te
nt

ial
 Cl

im
at

e C
ha

ng
e I

m
pa

cts
 in

 th
e

Ro
hin

i B
as

in,
 Ne

pa
l a

nd
 In

dia

Annex I: Working Paper Series

Title
The Cost-Benefit Analysis
Methodology

Pinning Down Vulnerability: From
Narratives to Numbers

Downscaling: Potential Climate
Change Impacts in the Rohini Basin,
Nepal and India

Evaluating Costs and Benefits of
Flood Reduction Under Changing
Climatic Conditions:
Case of the Rohini River Basin, India

Uttar Pradesh Drought Cost-Benefit
Analysis, India

Costs and Benefits of Flood
Mitigation in the Lower Bagmati
Basin: Case of Nepal Tarai and
North Bihar, India

Pakistan Case Study: Evaluating the
Costs and Benefits of Disaster Risk
Reduction under Changing Climatic
Conditions

Moving from Concepts to Practice: A
Process and Methodology Summary
for Identifying Effective Avenues for
Risk Management Under Changing
Climatic Conditions

Understanding the Costs and
Benefits of Disaster Risk Reduction
under Changing Climatic Conditions

Lead Authors
Reinhard Mechler (IIASA)

Daanish Mustafa (KCL); Sara
Ahmed, Eva Saroch (ISET-India)

Sarah Opitz-Stapleton (ISET);
Subhrendu Gangopadhyay
(University of Colorado, Boulder)

Daniel Kull (IIASA); Praveen Singh,
Shashikant Chopde (WII); Shiraz A.
Wajih (GEAG)

Reinhard Mechler, Stefan
Hochrainer, Daniel Kull (IIASA);
Praveen Singh, Shashikant Chopde
(WII); Shiraz A. Wajih (GEAG)

Ajaya Dixit, Anil Pokhrel (ISET-
Nepal); Marcus Moench (ISET)

Fawad Khan (ISET-Pakistan);
Daanish Mustafa (KCL); Daniel Kull
(IIASA)

Marcus Moench (ISET); Sara Ahmed
(ISET-India); Reinhard Mechler (IIASA);
Daanish Mustafa (KCL); Ajaya Dixit
(ISET-Nepal); Sarah Opitz-Stapleton
(ISET); Fawad Khan (ISET-Pakistan);
Daniel Kull (IIASA)

Marcus Moench (ISET)

Focus
CBA methods

VCI methods

Climate downscaling methods

India floods

India drought

Nepal Tarai and North Bihar floods

Pakistan (urban) floods

Methodology summary

Summary report

Working
Paper
Number
WP 1

WP 2

WP 3

WP 4

WP 5

WP 6

WP 7

WP 8

WP 9



28

From
 Risk to Resilience

W
orking Paper No.  3

This paper provides insights from an evaluation of the costs and benefits of disaster
risk reduction and adaptation to climate change in South Asia. The report is based
on a set of work undertaken in the Nepal Tarai, Eastern Uttar Pradesh, and
Rawalpindi, Pakistan. The progamme as a whole is financed by DFID and has been
undertaken in conjunction with related activities supported by IDRC, NOAA and
ProVention. The support of all these organizations is gratefully acknowledged.
Numerous organizations and individuals have contributed in a substantive way to
the successful completion of this report. The core group of partners undertaking
field work and analysis included: Reinhard Mechler, Daniel Kull, Stefan Hochrainer,
Unmesh Patnaik and Joanne Bayer from IIASA in Austria; Sara Ahmed, ISET
Associate, Eva Saroch; Shashikant Chopde, Praveen Singh, Sunandan Tiwari,
Mamta Borgoyary and Sharmistha Bose of Winrock International India; Ajaya
Dixit and Anil Pokhrel from ISET-Nepal; Marcus Moench and Sarah Opitz-
Stapleton from ISET; Syed Ayub Qutub from PIEDAR, Pakistan; Shiraz A. Wajih,
Abhilash Srivastav and Gyaneshwar Singh of Gorakhpur Environmental Action
Group in Gorakhpur, Uttar Pradesh, India; Madhukar Upadhya and Kanchan Mani
Dixit from Nepal Water Conservation Foundation in Kathmandu; Daanish
Mustafa from King's College London; Fawad Khan, ISET Associate and Atta ur
Rehman Sheikh; Subhrendu Gangopadhyay of Environmental Studies Program,
University of Colorado, Boulder. Shashikant Chopde and Sonam Bennett-Vasseux
from ISET made substantive editorial and other contributions to the project.
Substantive inputs from field research were also contributed in India, Nepal and
Pakistan by numerous dedicated field staff and individuals in government and non-
government organizations as well as the local communities that they interacted with.

Annex II: Acknowledgements



.



PREPS
C M
Y K

PREPS
C M
Y K

PREPS
C M
Y K

PREPS
C M
Y K

From Risk to
Resilience

Downscaling: Potential
Climate Change Impacts in
the Rohini Basin, Nepal
and IndiaWorking Paper 3

Sarah Optiz-Stapleton (ISET)
Subhrendu Gangopadhyay (University of Colorado, Boulder) &
The Risk to Resilience Study Team9 7 8 9 9 3 7 8 0 1 9 8 0



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




